
Volume xx (200y), Number z, pp. 1–15

Realtime Performance Driven Physical Simulation for Facial

Animation

V. Barrielle1,2 and N. Stoiber2

1CentraleSupélec, France
2Dynamixyz, France

vincent.barrielle@m4x.org, nicolas@stoiber.fr

Abstract

We present the first realtime method for generating facial animations enhanced by physical simulation from realtime perfor-

mance capture data. Unlike purely data-based techniques, our method is able to produce physical effects on the fly through the

simulation of volumetric skin behavior, lip contacts and sticky lips. It remains however practical as it does not require any phys-

ical/medical data which are complex to acquire and process, and instead relies only on the input of a blendshapes model. We

achieve realtime performance on the CPU by introducing an efficient progressive Projective Dynamics solver to efficiently solve

the physical integration steps even when confronted to constantly changing constraints. Also key to our realtime performance is

a new Taylor approximation and memoization scheme for the computation of the Singular Value Decompositions required for

the simulation of volumetric skin. We demonstrate the applicability of our method by animating blendshape characters from a

simple webcam feed.

CCS Concepts

•Computing methodologies → Animation; Physical simulation; Motion capture;

Keywords: facial animation, physical simulation, performance capture

1. Introduction

Producing convincing facial animation is a difficult task, which de-
spite years of research effort from the graphics community, still
cannot produce results that would fool an observer. Human beings
are so used to interpreting subtle variations of facial expressions
that any missing detail can drastically reduce the perceived quality
of the animation.

The now widespread usage of ever more advanced performance
capture systems makes it possible to capture every subtle detail
of an actor’s performance, but transferring that performance to
a virtual character’s animation can lead to losing the subtlety of
the movements. Indeed, the industry standard for facial rigs, the
blendshapes, cannot represent the full complexity of facial expres-
sions [LAR∗14]. As an affine model, blendshapes are ill-suited for
representing the inherently non-linear deformation of the skin.

Simulating the true physical behavior of facial elements does
lead to high quality facial animations [SNF05], but building an
adequate physical model is a daunting task that requires costly
data acquisition, as well as tedious manual work. A recent trend
attempts to alleviate these requirements by building physical sim-
ulation models on top of blendshapes [BSC16, IKNDP16]. Even
though these approaches show good results, are able to simulate

non-linear deformations and fine-grained skin dynamics and can
resolve lip contacts, their runtime requirements rules out realtime
uses and limits them to offline applications.

Both works build upon Projective Dynamics [BML∗14], an
efficient real-time physics simulation framework, but its direct
application to facial simulation does not yield real-time perfor-
mance, with computation times on the order of one second per
frame [IKNDP16]. Simulating the face requires handling a system
where interactions between components are in constant evolution
due to contact between lips, or transient effects such as sticky lips.
These ever-changing interactions prevent optimizations crucial to
the computational performance of Projective Dynamics.

In this paper, we propose a performance driven facial animation
system able to simulate these physical effects in realtime on the
CPU. Our method is based on the blendforces paradigm introduced
in Barrielle et al. [BSC16]. This paradigm proposes to interpret
the geometric deformation patterns of blendshapes as force vec-
tors, that can be activated through time to put the face in motion
within a Newtonian physical simulation framework. We enhance
this system by deriving a set of volumetric internal forces for a bet-
ter modeling of skin behavior, and add new forces to model sticky
lips (Section 4). We show how we can drive this physical system
by performance capture in realtime using a simple webcam (Sec-

submitted to COMPUTER GRAPHICS Forum (5/2018).

2 V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation

Facial landmark tracking

Facial Expression Database

Virtual 3D markers

Blendshape character

Physical simulation

Facial animation

with physical simulation

Figure 1: Our system creates physics-based facial animation from an RGB camera, enriching the animation with sticky lips effects.

tion 3). We tackle the problem of realtime simulation by introduc-
ing a new Projective Dynamics solver that requires no expensive
sparse matrix decomposition and adapts its computational budget
to the desired level of accuracy (Section 5). Additionaly, we show
how to further reduce the computational cost of volumetric forces
by introducing a Taylor approximation and memoization scheme
for the Singular Value Decomposition (SVD) those forces require
(Section 6). Note that although we build on the blendforces frame-
work, our new simulation mechanisms are general and should be
applicable to other physics-based facial animation methods such as
Ichim et al. [IKNDP16]. Our main contributions are:

• a method to build a volumetric physical system from a set of
facial blendshapes

• a progressive Projective Dynamics solver that preserves its per-
formance in the face of changing constraints and adapts its com-
putational budget to the requested accuracy/time trade-off.

• a Taylor approximation and memoization scheme for SVD com-
putations that drastically reduces the computational resources re-
quired for simulating volumetric forces

• a practical facial animation system that integrates this optimized
physical simulation with video-based facial performance capture
to automatically produce facial animation with physical effects
in realtime.

2. Related Work

High-quality facial performance capture Using multiple cam-
eras, Bradley et al. [BHPS10] and later on Beeler and col-
leagues [BHB∗11] captured the precise movements of the skin by
leveraging advanced optical flow techniques. Fyffe and cowork-
ers [FJA∗14] perfectionned the technique by dynamically choos-
ing the best anchors to avoid drift. Cao and colleagues [CBZB15]
demonstrated high-fidelity realtime facial performance capture
by combining advanced machine learning techniques and GPU-
implemented optical flow. Wu et al. [WBGB16] achieved high-
quality reconstructions with a single camera by leveraging an
anatomically-inspired model to constrain the tracking.

These methods achieve impressive facial performance capture
results, however, exception taken of the method of Cao and col-
leagues, they require huge computational resources, preventing
them from running in real time. They are also designed to cap-
ture movements and do not provide retargeting solutions. In this
work, we seek to achieve high-quality performance driven anima-
tion in real time by leveraging physical simulation to produce the
fine-scale details that cannot be captured online. In particular, the
optical flow leveraged by these methods frequently fails to capture
precise lips contacts.

Recently, deep learning techniques have shown interesting po-
tential for high-quality facial performance capture. Olszewski et
al. [OLSL16] used convolutionnal neural networks to recover
blendshape weights corresponding to the mouth expression of vir-
tual reality headset users. Laine et al. [LKA∗17] leveraged deep
learning to learn a mapping from an actor’s image to the corre-
sponding high-quality performance captured mesh, allowing for
the convenient capture of additional high-quality data. Thanks to
their machine learning formulation, these methods can infer co-
herent data during lips contacts if such information was present in
the training set. They cannot however generalize to capture inertial
movements that typically lie outside their training space.

Realtime performance driven animation Realtime facial per-
formance capture and animation has been extensively studied. The
commoditization of RGBD sensors such as the Kinect led to many
capture systems based on RGBD images, a trend pioneered by
Weise et al. [WBLP11]. Subsequent works enabled online cus-
tomization of the facial tracking model [BWP13,LYYB13], robust-
ness to occlusions [HMYL15] and the ability to work on a Virtual
Reality setup [LTO∗15].

Another trend has been realtime performance driven anima-
tion from an RGB camera. The availability of the FaceWarehouse
database [CWZ∗14] has enabled robust systems from a simple we-
bcam, starting with the person specific 3D regressor from Cao
et al. [CWLZ13], later extended to handle multiple identities and
lighting conditions [CHZ14]. Thies et al [TZS∗16] enhance the ac-

submitted to COMPUTER GRAPHICS Forum (5/2018).

V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation 3

curacy of facial tracking using an inverse illumination approach. To
robustify the animation, audio can be used when the facial tracking
is failing [LXC∗15]. Wang and colleagues [WSXC16] enhance the
animation results by capturing the gaze direction as well.

We propose to further improve facial animation results by rely-
ing on a physical simulation system driven by performance cap-
ture (Section 3), that produces effects difficult to otherwise capture,
such as lip contacts and sticky lips.

Physical simulation for facial animation Early attempts at pro-
ducing facial animation through physical simulation relied on mass-
spring systems [PB81, Wat87, TW93]. The quality of the produced
animation stepped up with the introduction of finite element mod-
els [KGPG96, KGC∗96]. Sifakis et al. [SNF05] demonstrated that
an anatomically accurate facial simulation model could be ani-
mated from motion capture data. However, the acquisition cost of
the model restricted the technique to high-end applications. To re-
duce the cost of building such detailed models, Cong and cowork-
ers [CBE∗15] developped a method to automatically transfer a
physical system to a new character, and increased artistic control
over the results [CBF16].

A recent trend aimed at mixing physical simulation with hand-
crafted data such as blendshapes. Ma et al. [MWF∗12] built
a mass-spring system with rest-lengths dynamically controlled
by blendshapes activations. In the same spirit, Ichim and col-
leagues [IKNDP16,IKKP17] interpolated deformation gradients to
animate a template-derived volumetric system. Kozlov and cowork-
ers [KBB∗17] used physical simulation to enrich an existing phys-
ical simulation with inertial effects. Li et al. [LXB16] fitted a
tetrahedral mesh to an existing surfacic facial animation to handle
self-collisions. Barrielle et al. [BSC16] introduced the blendforces
framework where delta-blendshapes are interpreted as a force ba-
sis corresponding to muscle activations and animate this physical
system from motion capture data. Their physical system is how-
ever limited to surfacic forces. Our work expands on it by automat-
ically constructing a volumetric face physical system from a set of
blendshapes, thus enabling the simulation of volumetric forces, and
by enhancing contact resolution with sticky lips simulation (Sec-
tion 4).

Realtime physical simulation The Projective Dynamics frame-
work [LBOK13, BML∗14] is a robust and fast framework for
systems with constant constraints, but has not yet been success-
fully applied to realtime facial animation. Realtime physically-
based facial animation is challenging: state of the art methods
can simulate facial performances at around one frame per sec-
ond [IKNDP16, IKKP17, LXB16].

The first obstacle to performance is the continuously chang-
ing constraints due to lips contacts that prevents efficient physical
simulation techniques such as Projective Dynamics to use a pre-
factorized solver. Recent works handled changing systems by using
iterative solvers such as an accelerated Jacobi [Wan15, WY16] or
a parallel Gauss-Seidel [FTP16]. However, these methods are de-
signed to take advantage of the computational power of the GPU
and are likely to be less efficient on the CPU. Narain and col-
leagues [NOB16] showed that Projective Dynamics could be inter-
preted as a special case of an ADMM-based implicit Euler integra-
tion, and leveraged this fact to accelerate the convergence and sim-

ulate non-linear elasticity. Unfortunately, the performance of their
method relies on a pre-factorized solver, making the approach un-
suitable for the simulation of sticky lips. Liu et al. [LBK17] gen-
eralized Projective Dynamics to enable simulation of hyperelastic
materials, improving the convergence of Projective Dynamics in
the process, but their computational performance still suffers when
constraints change. Our approach leverages an iterative solver inte-
grated into the L-BFGS acceleration technique of Liu et al. (Sec-
tion 5).

The second obstacle to performance lies in the computation of
the forces projections. In particular, most volumetric forces re-
quire performing numerous SVDs, which are computationally ex-
pensive, even with the fast SVD technique of McAdams and col-
leagues [MST∗11]. Fast polar decomposition methods have been
used to simulate volumetric elasticity [RJ07, Wan15, MBCM16],
however the polar decomposition cannot be used to simulate vol-
ume preservation, which is crucial to simulate the behavior of facial
skin.

We propose to take advantage of the iterative nature of Projective
Dynamics to memoize SVD computations, using a Taylor approxi-
mation to enhance the precision of our memoization strategy (Sec-
tion 6). In this respect, our method shares some similarity with the
warm-started fast polar decomposition of Rivers and James [RJ07].
However, our method differs in two important aspects: we compute
a full singular value decomposition, and our Taylor analysis gives
rise to an adaptive memoization scheme allowing to completely
avoid some SVD computations.

3. Performance Driven Physical Simulation

Our facial animation method consists of simulating a physical face
system through time. In this section, we recall the principles under-
lying physical simulation and describe how we can drive a physical
face system with performance capture data. An overview of the an-
imation system is presented in Figure 1.

3.1. Physical Simulation

Given a face mesh and its vertices x, we can simulate the effect of
Newton’s second law of motion on its evolution by performing an
implicit Euler integration with for a timestep h:

xt+1 = xt +hvt+1 (1)

vt+1 = vt +hM
−1

ft+1 (2)

where M is the mass matrix of the system, and ft is the sum of
internal and external forces acting on the system at timestep t +
1. We use the Projective Dynamics framework [BML∗14], where
internal forces derive from potentials of the form:

Wk(x) =
wk

2
‖Gkx−Hkpk‖

2 , (3)

where Gk and Hk are constant differential operators, for instance
Laplacian matrices or deformation gradient operators, and pk is a
projection of x on the constraint manifold. Our exact choice of in-
ternal forces is detailed in Section 4. The external forces acting on
our face mesh are gravity and the action of muscles. In this work,
we consider the latter to be modeled as vector forces lying in the

submitted to COMPUTER GRAPHICS Forum (5/2018).

4 V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation

linear span of the blendshape matrix B. These blendforces are thus
expressed as fmuscles = Bu .

The time integration can be recast as an energy minimiza-
tion problem [MTGG11]. Indeed, one can combine equations (1)
and (2) as:

xt+1 = xt +hvt +h
2
M

−1

(

Bu+ fgravity −∑
k

∇Wk(xt+1)

)

. (4)

Solving equation (4) is equivalent to minimizing

EPD(xt+1) =
1

2h2

∥

∥

∥
M

1/2(xt+1 −yt)
∥

∥

∥

2

F
+∑

k

Wk(xt+1), (5)

where yt = xt + hvt + h2M−1 (Bu+ fgravity
)

is the predicted state
of the system in the absence of internal forces. Projective Dynamics
solves this minization problem by alternating between local steps

which compute the constraint projections pk for each internal force
and a global step that solves the linear problem associated to mini-
mizing equation 5:

xt+1 =

(

M

h2 +Z

)−1(
Myt

h2 +Yp

)

, (6)

with Z = ∑k wkGT
k Gk, p a stacking of all the pk and Y =

∑k GT
k HkSk, Sk being a selection matrix such that pk = Skp.

Using the Projective Dynamics framework guarantees that the
global step matrix A = (M/h2 +Z) is symmetric positive definite
(SPD), and constant as long as the support of internal forces does
not change. This property allows one to precompute the global step
matrix inversion through a sparse Cholesky decomposition, which
triggers excellent computational performance up to realtime rates.
However, the assumption of constant support is not valid for some
internal forces we wish to consider, such as contact response forces
on the lips or transient forces like sticky lips. We show how we
handle the global step for those cases in Section 5.

3.2. Performance Driven Control

We drive our physical simulation by computing the blendforces
actuation parameter u that reproduces as faithfully as possible fa-
cial performances captured by an RGB camera. The blendforces
framework enables computing these actuations from motion cap-
ture markers, however no markers are available in our setup. We
overcome this issue by generating “virtual markers” matching the
captured facial performance.

From the video frames we extract facial landmarks l using a
state-of-the-art method [KS14]. Using the 3D blendshape database
FaceWarehouse [CWZ∗14], we build a parameteric 3D facial shape
model capable of modeling variations of identity and expression as
in Thies et al [TZN∗15]:

s(βid,βexp) = µ+ΨΨΨidβid +ΨΨΨexpβexp, (7)

where ΨΨΨid and ΨΨΨexp are matrices storing the principal modes of
facial shape variation with respect to identity and expression, re-
spectively. We fit this model to the 2D landmarks by minimizing
the energy:

Efit = Eproj +widEid +wexpEexp, (8)

where Eid and Eexp are PCA priors preventing the identity and ex-
pression parameters from leaving their validity range, and

Eproj = ∑
v∈S(s)

‖Π(Qv+ t)− lv‖
2
F , (9)

where Π is the camera projection operator, S(s) is the set of vertices
in our parametric face model that have a corresponding landmark
point, lv is the landmark corresponding to vertex v, and Q and t

represent the rigid motion of the face model.

We then apply the computed expression parameters β∗
exp to iden-

tity parameters β+
id corresponding to the neutral mesh of our face

physical system, and select some “virtual markers” t on the result-
ing mesh:

t = T
(

µ+ΨΨΨidβ+
id +ΨΨΨexpβ∗

exp
)

, (10)

where T is a selection matrix for our virtual markers. These markers
are then used to compute the blendforces actuation parameters u∗

that bring the facial system closest to the markers:

u
∗ = argmin

u

∥

∥t−T
′
x(u)

∥

∥

2
, (11)

where T′ selects vertices corresponding to the virtual markers. Fol-
lowing the control strategy of Barrielle et al [BSC16], we leverage
the fact that, for fixed constraint projections p, x is a linear func-
tion of u. In this setup, the control problem of equation 11 can be
solved using a linear least-squares solve, which features a constant
left-hand side when only considering internal forces with constant
support. For this reason, we solve for u∗ without taking transient
forces such as lips collisions or sticky lips into account. We jus-
tify this approximation by noting that a realistic facial mesh con-
figuration featuring lips self-intersection is typically really close
in euclidean distance to a configuration with no self-intersection.
Therefore, blendforces actuations computed without considering
collision forces should be very close to those computed while tak-
ing these forces into account. A similar argument can be used for
sticky lips forces. In Barrielle et al, the projections p and actuations
u are iteratively refined by simulating the face physical system in
this contact-free setup. We found that, for realtime purposes, as few
as two iterations of this control procedure led to visually satisfy-
ing blendforces actuations, freeing some computational budget for
physical simulation including lips contacts.

4. Face Physical System

In this section we describe how we build a volumetric physical face
system from a set of facial blendshapes, and the nature of internal
forces that act in the Newtonian physical simulation introduced in
Section 3.

Contrary to some previous approaches, where building a facial
physical system required specific and complex data aquisition, we
chose to construct one automatically from blendshapes. Not only
is this process less tedious, it also renders our approach more prac-
tical given wide availability of blendshapes models in real-world
applications.

Given a model defined by its neutral shape x0 and a blendshape
matrix B, we interpret B as a basis of external forces that mimic
muscle activations (Section 3). These forces deform a facial mesh

submitted to COMPUTER GRAPHICS Forum (5/2018).

V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation 5

that resists deformation due to internal forces such as skin elastic-
ity or the presence of the skull. In this work, we wish to take the
thickness of the flesh into account. To this end, based on the neutral
mesh we compute an hypodermal surface that represent the skin’s
thickness, and build a tetrahedral mesh connecting this new surface
with the neutral meshs’s surface.

4.1. Hypodermal Surface Construction

We build an hypodermal surface by offsetting the neutral mesh’s
surface and smoothing its high frequency components. We assign
to each vertex vi a skin thickness value τi. These thickness values
can be either equal for all vertices or painted on the mesh’s surface.
We compute an extruded surface t by subtracting the thicknesses
along the normal directions:

ti = vi − τini, (12)

where ni is the normal direction at vertex vi. We then compute the
hypodermal surface by minimizing the following energy:

argmin
xh

‖xh − t‖2 +wsmooth ‖Lxh‖
2 +wlap ‖Lxh −Lx0‖

2 , (13)

where L is the laplacian matrix associated with the model’s trian-
gle mesh. The parameters wsmooth and wlap respectively control the
smoothness of the hypodermal surface and how closely its curva-
ture matches that of the neutral mesh.

As each vertex of the hypodermal surface has a corresponding
epidermal vertex, it is straightforward to join these two surfaces
so as to form a tetrahedral mesh. Each triangle in the epidermal
surface has a correspong triangle in the hypodermal surface. The
volume defined by this extrusion structure can be discretized as 3
tetrahedrons. Since there is more than one possiblity to create these
tetrahedrons, we enforce a coherent structure by propagating an ini-
tial choice during a traversal of the triangle adjacency graph.

This hypodermal surface construction method provides a simple
mean to create a volumetric face mesh, but is not without defects.
If the chosen skin thickness values τi are too large, badly shaped
or intersecting tetrahedra could be created, especially in areas with
high curvature. We worked around this issue by specifying lower
thickness values in problematic areas.

4.2. Skin Modelling

Based on the volumetric face mesh presented in Section 4.1, we
now define the internal forces that will govern how the face de-
forms in reaction to external forces. As in Ichim et al [IKNDP16]
or Barrielle et al [BSC16], our forces are modelled using the Projec-
tive Dynamics framework. The skin’s elasticity is modelled using
an as-rigid-as-possible potential. For each tetrahedron, its potential
is written as:

Wstrain(x) = wstrain

∥

∥

∥
Dx−UV

T
∥

∥

∥

2
, (14)

where D is the matrix to form the deformation gradient of the
tetrahedron with respect to the rest configuration [Wan15], and

Figure 2: Probability of a sticky lips spring to break as a function
of its length.

UΣΣΣVT = F = Dx is the SVD of the the deformation gradient. Intu-
itively, this potential constrains tetrahedron to stay close to a rotated
rest configuration.

Like most biological soft tissues, human skin is nearly incom-
pressible [WMG96]. We model this with a potential that penalizes
volume changes:

Wvol(x) = wvol

∥

∥

∥Dx−UΣΣΣ∗
V

T
∥

∥

∥

2
, (15)

where ΣΣΣ∗ is the closest diagonal matrix of determinant 1 to ΣΣΣ.

We model skin attachment to the skull by adding springs with
zero rest-length to the hypodermal vertices, attracting them to their
rest positions. As in Barrielle et al [BSC16], all forces’s stiffnesses
are automatically determined from the blendshapes by solving for
the stiffnesses that enable static equilibrium of all forces on each
blendshape expression.

4.3. Lips Contacts

Our physical system prevents interpenetration of lips by detecting
collisions and adding non-collision constraints to the system. Ad-
ditionaly, we introduce a new force to handle the sticky lips phe-
nomenon. For each lips collision, we instantiate springs with zero
rest-length between the colliding points. These springs remain ac-
tive on the following frames, but break when their length gets too
long, which corresponds to breaking the sticky lips constraint when
it is subject to too much tension. More specifically, the probability
for a sticky lips spring of length l to break is

pbreak(l) =
1− tanh(2− rl)

2
(16)

where r is a constant chosen to ensure that the break probability
for a caracteristic length l0 is 0.1. We experimentally set l0 to 2mm.
At the end of each simulated frame, random numbers in the [0,1]
range are generated for each sticky lips spring, and we break the
springs where the generated random number is lower than pbreak(l).
The break probability as a function of the sticky spring length is
displayed in figure 2.

The actual sticky lips phenomenon depends on lips humidity,
making each sticky lips occurence different. Our random break-
ing scheme reproduces the non-predictible impression given by this
natural process. For instance, note that the non-zero probability of

submitted to COMPUTER GRAPHICS Forum (5/2018).

6 V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation

breaking sticky springs of length zero accounts for the fact that
sticky lips do not always occur.

5. Progressive Projective Dynamics Solver

5.1. Shortcomings of Projective Dynamics Solvers

The computational performance of Projective Dynamics comes
from having a constant system matrix A in the least-squares prob-
lem of equation 5. This enables the use of efficient pre-factorized
solvers, typically a Cholesky solver. However, in the face of chang-
ing constraints, the global step matrix is no longer constant, and
alternative methods have to be explored. Wang [Wan15] solves the
global step system using one Jacobi iteration, and relies on Cheby-
shev multipliers to accelerate convergence, therefore requiring no
pre-factorization of the system. However, Jacobi iterations have no
convergence guarantees for matrices that are not diagonally domi-
nant, and the system matrix for tetrahedral strain and volume con-
straints contains strong off-diagonal components. Wang proposes
to use under relaxation to overcome this issue, but in our case an
under relaxation factor of 0.3 was necessary to avoid divergence,
making the convergence too slow to be usable in practice. Besides,
Wang recommends turning Chebyshev multipliers off for the first
10 iterations, requiring even more iterations to provide a benefit
over Jacobi iterations, which in practice is only affordable on the
GPU. Ichim et al [IKNDP16] propose to handle collisions by aug-
menting the global step system with equality constraints using La-
grange multipliers, however this method cannot handle other kinds
of changing constraints. Most notably, this method is not suited to
express the additional spring constraints we introduce to simulate
sticky lips.

An effective method to boost the convergence properties of Pro-
jective Dynamics has been devised by Liu et al [LBK17]. They
identify Projective Dynamics as a quasi-Newton method, showing
that equation 6 is equivalent to updating xt by −A−1∇EPD. They
thus see A−1 as an initial inverse Hessian approximation, and pro-
pose to improve upon this approximation by integrating the limited-
memory BFGS (L-BFGS) procedure into the Projective Dynamics
procedure. They show that integrating L-BFGS enables more di-
verse simulation capabilities and accelerated convergence. Their
method shows excellent results, but is not directly suited for the
simulation of systems with constraint changes, as it still relies on
a pre-factorization of the global step matrix A for optimal perfor-
mance. We propose to extend their method to handle systems with
constraint changes. To this end, we rely on the Gauss-Seidel itera-
tive process as a replacement of the pre-factorized Cholesky solver.
We thereby take advantage of the fact that Projective Dynamics
guarantees that the global step matrix is SPD and Gauss-Seidel it-
erations are guaranteed to converge on SPD matrices.

5.2. Adaptive Gauss-Seidel Iterations

Since our face physical system features changing constraints, we
cannot directly employ the L-BFGS accelerated Projective Dynam-
ics method of Liu and colleagues [LBK17]. We propose a variation
of their method where we integrate iterations of the Gauss-Seidel
solver within the L-BFGS procedure itself to play the role of
A−1. We call this optimization scheme Gauss-Seidel-L-BFGS

ALGORITHM 1: L-BFGS Gauss-Seidel procedure

1 Function gsLbfgs (A,n)(g,m)

Data:

A: global step system matrix
n: number of Gauss-Seidel iterations
g: gradient of EPD

m: history size
Result: d, the descent direction

2 q← forwardLbfgs(g,m)
3 /* n−1 GS iterations, starting from q */

4 s← Gauss-Seidel(A,n−1,q,q)
5 /* Ensure we computed a descent direction */

6 repeat

7 s← Gauss-Seidel(A,1, s,q)
8 d← backwardLbfgs(s,m)

until gT d < 0
9 return d

end

ALGORITHM 2: Simulation with adaptive Gauss-Seidel solver

1 for t ∈ [1,Ntimesteps] do

2 yt ← xt +hvt +h2M−1 fext

3 xt+1,1← yt

4 n← 2
5 for k ∈ [1,Niterations] do

6 p← projectOnConstraints(xt+1)
7 e0← EPD(xt+1,k,p)
8 g←∇EPD(xt+1,k,p)

9 d← gsLbfgs(A,n)(g,m)/* See alg. 1 */

10 nls← 0
11 α← 1

repeat

12 xt+1,k+1 = xt+1,k +αd

13 e← EPD(xt+1,k+1,p)
14 α← α/2
15 nls← nls +1

until e≤ e0 + cαgT d /* Armijo condition */

if nls 6= 1 then

16 n← 2n

end if

17 updateLbfgsHistory(xt+1,k+1,g)

end for

18 xt+1← xt+1,k+1

end for

(algorithm 1).

Integrating Gauss-Seidel into L-BFGS The L-BFGS proce-
dure requires an initial Hessian approximation defined only by its
ability to be multiplied by a vector. The sparse Cholesky solver
used by Liu and colleagues satisfies this condition, and so does an
iterative solver such as the Gauss-Seidel solver we propose. How-
ever, integrating an iterative solver presents additional difficulties.
With an iterative solver used for a limited number of iterations,
there is no guarantee that the method will effectively produce a
descent direction.

submitted to COMPUTER GRAPHICS Forum (5/2018).

V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation 7

Figure 3: Decrease of the relative error on a typical simulation timestep involving collisions and sticky lips. The relative error is measured
with respect to the best converged state among all methods. Timings were measured without using our SVD memoization strategy (Section 6).

To see how we can make sure we get a descent direction, let’s
briefly recall the functionning of L-BFGS. L-BFGS first transforms
the gradient ∇EPD using curvature information accumulated in
previous iterations (procedure forwardLbfgs() in algorithm 1).
Then the initial inverse Hessian is applied, and another transforma-
tion by the curvature information (procedure forwardLbfgs())
yields the update. For details on these procedures, see algorithm
9.1 from Nocedal and Wright [NW06]. The first loop of this al-
gorithm corresponds to forwardLbfgs(), and the second loop
corresponds to forwardLbfgs(). The update is guaranteed to be
a descent direction if the initial inverse Hessian is SPD. Since
the Gauss-Seidel iterative method is guaranteed to converge on
SPD matrices, given any inital value, there exists a Gauss-Seidel
iteration count such that the update obtained is a descent direc-
tion. We take advantage of the cheap computational cost of the
forwardLbfgs() procedure to iteratively check if, after an initial
number of iterations, the computed update is a descent direction,
augmenting the number of Gauss-Seidel iterations otherwise.

To ensure that this procedure does not result in too many
additional Gauss-Seidel iterations, we introduce an heuristic for
the choice of the starting point of the iterative method. We found
experimentally that using the result of the forwardLbfgs()

procedure as a starting point leads to a descent direction without
additional iterations most of the time.

Number of Gauss-Seidel iterations We place our Gauss-Seidel-
L-BFGS procedure as the global step optimization procedure
within Projective Dynamics (algorithm 2). Besides avoiding the
need for re-factoring matrix A in the face of changing constraints,
using the Gauss-Seidel iterative method allows skipping computa-
tions that yield unnecessary precision. Indeed, solving A−1q to full
Gauss-Seidel convergence wastes computations, since computing
new constraint projections in each local step implies solving on a
different right hand side q on the following global step. A more
efficient scheme is to compute an approximate solution, while en-
suring that this approximation is accurate enough to represent an
improvement for the overall simulation. We contribute an heuris-
tic to determine an appropriate number of Gauss-Seidel iterations,

balancing computational resource usage and accuracy of the solve.
Our heuristic rests on the Armijo condition of sufficient decrease.
This condition requires that, for a descent direction d:

EPD(x+αd)≤ EPD(x)+ cα∇EPD(x)
T

d, (17)

where α is the line search step length, and c ∈ [0,1] a constant
(we use c = 0.1). Our L-BFGS scheme includes a backtracking
line search step that checks if the decrease of EPD verifies the
Armijo condition. We interpret a number of line search iterations
greater than one as a hint that the number of Gauss-Seidel iter-
ations was not sufficient. Consequently, we increase the number
of iterations for the next global steps in the current timestep. The
complete procedure is outlined in algorithms 1 and 2. The proce-
dure updateLbfgsHistory() records the curvature information
for the latest m iterations. As Liu and colleagues, we choose m = 5.

While a full Cholesky factorization is not an option for realtime
scenarios, in offline cases, we might find that increasing the num-
ber of Gauss-Seidel iterations could lead to a solve slower than a
Cholesky solve, albeit less precise. While this issue does not arise
in practice for realtime simulation, handling this case is important
to use our solver for offline simulations. In offline scenarios, we
propose a simple strategy, consisting of computing the Cholesky
factorization of the new system matrix in a background thread, and
using the Cholesky solve instead of the Gauss-Seidel solve once the
factorization is complete. This way, the factorization time has little
influence on the time to compute a timestep.

5.3. Convergence Properties

We assert the effectiveness of our solver by measuring its conver-
gence properties on a typical simulation timestep involving colli-
sions and sticky lips. We measure the relative error to the converged
state x∗ of the method that achieved the lowest energy. The de-
crease of the relative error ε = (EPD(x)− EPD(x

∗))/(EPD(x0)−
EPD(x

∗)) is shown in Figure 3. We compare against Projective Dy-
namics with a Cholesky solver [BML∗14] and Projective Dynam-
ics with a solver made of 1 iteration of Gauss-Seidel. Due to the
non-smooth derivative of the collision term, these methods with-
out a line search present oscillations once the system gets close to

submitted to COMPUTER GRAPHICS Forum (5/2018).

8 V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation

its converged state. We showcase the convergence behavior of two
variants of our method. In the realtime variant, the varying num-
ber of Gauss-Seidel iterations is used, while in the offline variant,
as described previously, we switch to a Cholesky solver once the
offloaded factorization has been computed, at iteration 8 in this
experiment. In the first iterations of the process, the convergence
behavior is identical. However, after 10 iterations, switching to the
offloaded Cholesky solver is beneficial. To assess the importance
of our Gauss-Seidel iteration strategy, we compare our method to a
version with a single Gauss-Seidel iteration per solve. After a few
global iterations, a single Gauss-Seidel iteration does not provide
a good descent direction, causing more line search steps to be per-
formed and a stall in relative error reduction.

We also compare to the method of Liu and colleagues [LBK17].
The offline variant of our method is exactly the method of Liu and
colleagues after a few iterations (once the Cholesky factorization
has been computed), therefore the difference between the two meth-
ods stems from a different starting point. Our method enjoys a per-
formance advantage in the early iterations since it does not pay the
price of recomputing a Cholesky factorization. One can notice that
our offline method achieved the lowest energy here, but that is not
always the case, and on other frames the method of Liu and col-
leagues may get a lower energy. Still, the difference in relative er-
ror is always on the order of 10−4, and the convergence curves still
exhibit similar shapes in the first iterations. We interpret this phe-
nomenon as an artifact of the line search procedure. Indeed, as Liu
and coworkers, we chose a computationally efficient backtracking
line search procedure based on Armijo conditions, however the rec-
ommended line search strategy for L-BFGS line search should also
check the Wolfe conditions, which prevent too short updates, but
comes at higher computational cost. While Liu et al did not find
issues with this approach, we think our setup, and more particu-
larly collision forces, can lead to very small updates, which cause
the procedure to stall sooner than it would with a better line search
scheme. For our realtime approach, we still advocate for the simple
backtracking line search approach, but for offline simulation inte-
grating Wolfe conditions could be interesting.

These results show that the convergence properties of our
method are particularly interesting for realtime use, since it con-
sistently achieves the best relative error reduction in the early parts
of the simulation.

6. Fast SVD Approximation

Simulating skin in the Projective Dynamics framework requires
computing expensive per-tetrahedron SVDs. Indeed, volume
preservation is an important component for the realistic simulation
of skin, and cannot be handled without computing the singular val-
ues, as opposed to volumetric strain which can be computed with
a lighter polar decomposition [Wan15]. Wang noted that, even on
the GPU with a fast global step solver, SVD computation would
dominate the simulation time. This problem is even more relevant
on the CPU, with less computational power than the GPU for the
highly parallel local steps. To tackle this issue, we note that, since
Projective Dynamics iteratively computes the vertices positions, the
deformation gradients of tetrahedrons are unlikely to have changed
much between two iterations. It is therefore possible to take advan-

Figure 4: Differential SVD approximation process

tage of SVDs evaluated on previous iterations to reduce the com-
putational burden. We propose to leverage previous computations
with a differential scheme using Jacobians of the SVD to form its
first-order Taylor approximation.

6.1. SVD Taylor Expansion

From the SVD decomposition U,ΣΣΣ,V of a matrix F given by its
indices (Fi j)i, j , it is possible to compute the Jacobians of the de-

composition ∂U
∂Fi j

, ∂ΣΣΣ
∂Fi j

, ∂V
∂Fi j

[PL00]. However, computing these Jaco-

bians is an O(n4) operation, even more than the already too expen-
sive O(n3) of the SVD. While this could suggest that using these
Jacobians for a first-order Taylor approximation is too expensive
for real-time needs, we show that it is possible to formulate a really
cheap procedure to compute them in our setup. In the following,
please note that we consider an unusual version of the SVD, where
the U and V matrices are actual rotations, meaning that the diagonal
of ΣΣΣ can have negative elements.

Consider the deformation gradient of a tetrahedron F = UΣΣΣVT .
Instead of forming the Jacobians of this SVD, we compute the Jaco-
bians of matrix ΣΣΣ = UT FV. In the following Projective Dynamics
iteration, given a new deformation gradient F′, we use these Jaco-
bians in a first-order Taylor expansion to approximate all three SVD
matrices of UT F′V. We can then recover an aproximate SVD for F’
as:

SVD
(

U
T

F
′
V
)

≃
(

Û
′, Σ̂ΣΣ

′

, V̂′
)

SVD
(

F
′
)

≃
(

UÛ
′, Σ̂ΣΣ

′

,VV̂
′
)

.
(18)

The process for computing an approximate SVD this way is out-
lined in figure 4. With this setup, we have reduced our problem to
computing the SVD Jacobians on a diagonal matrix, UT FV. It turns
out that this problem is significantly less expensive, as many steps
of the process can be simplified. In fact, the SVD Jacobians turn
out to have a close form solution and to exhibit strong sparsity. We
only present the resulting Jacobians here, but interested readers are
invited to read the complete derivation in appendix A. For a 3× 3
diagonal matrix C, let ŨΣ̃ΣΣṼT be its SVD. The Jacobian for the Σ̃ΣΣ

SVD matrix coefficients is given by

∂Σ̃ΣΣ

∂C
=





1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0



 , (19)

where we vectorize matrix C in row-order fashion. Recalling equa-

tion 18, this means that we approximate the Σ̂ΣΣ
′

component of the

submitted to COMPUTER GRAPHICS Forum (5/2018).

V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation 9

ALGORITHM 3: SVD Jacobian approximation

1 Function svdApprox (U,ΣΣΣ,V,J,F′)

Data:

(U,ΣΣΣ,V): SVD of previous deformation gradient F

J: components of the Euler-SVD Jacobian
F′: new deformation gradient
Result: (Ũ, Σ̃ΣΣ, Ṽ), the approximate SVD

2 C← UT F′V

3 Σ̃ΣΣ← diag(C)
4 θ0← j0C12 + j1C21

5 θ1← j2C02 + j3C20

6 θ2← j4C01 + j5C10

7 θ′0← j0C21 + j1C12

8 θ′1← j2C20 + j3C02

9 θ′2← j4C10 + j5C01

10 Ũ← UR(ΘΘΘ)

11 Ṽ← VR(ΘΘΘ′)

return (Ũ, Σ̃ΣΣ, Ṽ)
end

SVD of F′ by the diagonal of UT F′V. The Jacobians of Ũ and Ṽ

have a similar sparsity pattern and similar nonzero values, given by

∂Ũ

∂C
≡

∂Ṽ

∂C
≡





























• 0 0 0 0 0 0 0 0
0 • 0 • 0 0 0 0 0
0 0 • 0 0 0 • 0 0
0 • 0 • 0 0 0 0 0
0 0 0 0 • 0 0 0 0
0 0 0 0 0 • 0 • 0
0 0 • 0 0 0 • 0 0
0 0 0 0 0 • 0 • 0
0 0 0 0 0 0 0 0 •





























, (20)

where the bullets • represent nonzero values, which have the forms

• ≡
1
2

(

±1

d̃k + d̃l

+
1

d̃k − d̃l

)

or • ≡
±1

d̃k − d̃l

, (21)

with d̃0, d̃1, d̃2 the diagonal values of Σ̃ΣΣ.

The SVD Jacobians in our case thus only require to compute
about 15 values, much less than the 108 values required by the
method described by Papadopoulo and Lourakis [PL00]. As shown
by equation 21, these values have simple close-form values, while
the full method would require 2× 2 linear solves for each value.
As the next section will show, we can further reduce the number of
Jacobian values computed to 6, leading to an even more efficient
implementation. Timings of our methods show that computing our
sparse Jacobian values takes around 9.13ns, whereas computing the
full Jacobians takes around 456ns.

6.2. Euler Angles SVD Expansion

Using a first-order Taylor expansion to approximate rotation ma-
trices yields non-orthogonal matrices. To overcome this issue, we
formulate our approximations of the SVD’s rotation matrices in
the Euler angles parameter space, ensuring that we only output
true rotation matrices. Since we compute our SVD Jacobians on
UT FV, we need to compute the Euler angles Jacobian around the

identity. Let us recall the Euler angles definition. For Euler angles
ΘΘΘ = (θ0,θ1,θ2), we form the rotation matrix:

R(ΘΘΘ) =





1 0 0
0 c0 s0

0 −s0 c0









c1 0 −s2

0 1 0
s2 0 c1









c3 s3 0
−s3 c3 0

0 0 1



 , (22)

with ci,si the cosine and sine of θi. Inverting the relation and differ-
entiating around R = I yields

∂ΘΘΘ

∂R
=





0 0 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0



 . (23)

Combining this Euler angles Jacobian to our SVD Jacobians
yields a sparse matrix, detailed in Appendix A, that can be de-
fined by six values J = (j0, j1, j2, j3, j4, j5)

T that are computed
using equation 29. Once Euler angles for Ũ and Ṽ have been com-
puted, we reconstruct the rotation matrices with equation 22. For
additional performance gain we approximate the cosine and sine
functions with their second and first order Taylor expansions, re-
spectively. Our complete procedure for computing an approximate
SVD is described in algorithm 3.

6.3. SVD Memoization Strategy

In the iterative scheme of Projective Dynamics vertex positions up-
date progressively, which opened the way for our Taylor-based ap-
proximation of section 6.1. In case of very small changes, we ar-
gue that the SVD may not need to be updated at all. We therefore
opt for a strategy where we choose for each tetrahedron whether
to keep the previous SVD as is, use our Taylor approximation of
section 6.1, or compute a full SVD anew. We propose to determine
the precision of our Taylor expansion using the matrix norm of our
Euler-SVD Jacobian. Since the spectral norm of a matrix is always
smaller than its Frobenius norm, we can safely use the Frobenius
norm ||J||F as an approximation of the spectral norm. We can then
measure an upper bound on the Euler angles change:

‖∆ΘΘΘ‖ ≤ ‖J‖F

∥

∥F
′−F

∥

∥

F
. (24)

Using this upper bound, we can adapt at runtime the required
computation for a given tetrahedron. We consider two thresholds
τ0 < τ1. If ‖J‖F‖F′−F‖F < τ0, we keep the results of the previous
SVD computation. If τ0 ≤ ‖J‖F‖F′−F‖F < τ1, we use our Taylor
approximation. Otherwise, we compute a full SVD decomposition
of F′. To avoid drifting, we only compute our approximation with
respect to states for which the regular SVD has been computed.
Full SVDs are computed for all tetrahedrons at the beginning of
a timestep. For improved precision, we progressively reduce the
values of τ0 and τ1, halving them after each Projective Dynamics
iteration.

6.4. Accuracy of the SVD Approximation

To assess the accuracy of our SVD memoization scheme, we sam-
ple random deformation gradient-like matrices in the following
manner: we sample the Euler angles of the U and V matrices, and
sample the diagonal matrix ΣΣΣ by drawing from a normal distribu-
tion of mean 1 and standard deviation 0.5. We then sample per-

submitted to COMPUTER GRAPHICS Forum (5/2018).

10 V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation

Figure 5: SVD approximation error as a function of the distance to
the reference matrix.

Figure 6: SVD approximation error in terms of Euler angles.

turbations to the Euler angles and the diagonal values by draw-
ing from normal distributions of mean 0 and standard deviations
σangle and σdiag, yielding perturbations δU,δΣΣΣ,δV. We compute
our SVD Jacobian on the unperturbed matrices, apply our method
to the perturbed matrices, yielding reconstructed matrices Û, Σ̂ΣΣ, V̂,
and measure the error. In Figure 5, we measure the mean recon-
struction Frobenius error ‖ÛΣ̂ΣΣV̂T −UΣΣΣVT ‖F as a function of the

initial Frobenius error ‖(U+ δU)(ΣΣΣ+ δΣΣΣ)(V+δV)T −UUUΣΣΣVVV T ‖F .

Since forming (U+ δU)(ΣΣΣ+ δΣΣΣ)(V+δV)T is linear in δΣΣΣ, we ex-
pect the precision of our order 1 approximation to not depend on
σdiag, which is confirmed in Figure 5. Up to a certain amount of
deviation, our Taylor expansion method yields a satisfying approx-
imation of the SVD. This comforts us in our use of the estimated
Euler angle change as a way to predict the approximation error of
our method. The reconstructed Euler angle error as a function of
σangle is shown in Figure 6. We can observe that our approximation
leads to a substantial amelioration over plain memoization.

We measure the performance of our method by applying it to

Figure 7: Breakdown of computation times within a timestep in-
volving 50 collision constraints and 110 sticky lips constraints.

224 randomly sampled matrices. The time to compute our approx-
imated SVD for all those matrices amount to 281ms, translat-
ing to 16.7ns per SVD. In comparison, the method of McAdams
et al [MST∗11], which consists of hand-written SIMD intrinsics,
yields 369ms for the same number of matrices, translating to 22.0ns
per SVD. The per-SVD cost of our method is thus 25% lower.

In addition to this raw computation gain, our method brings fur-
ther performance improvements with the automatic determination
of which SVD computations need and need not be performed (Sec-
tion 6.3). When used inside our simulation, for a typical timestep,
around 48% of tetrahedrons do not need recomputation of the SVD,
34% are computed using our Taylor SVD approximation, and the
rest requires a full SVD computation. Without halving the τ0 and τ1

thresholds after each iteration, the computed state has a relative er-
ror of 10−3 compared to the converged solution, but halving them
on each of the first five iterations gives a computed state with rela-
tive error smaller than 10−5.

7. Results

7.1. Performance Evaluation

We evaluate the performance of our system by simulating a physi-
cal face system with 14k vertices and 45k tetrahedrons. The simula-
tion is performed on a desktop computer with a 3.2 GHz Intel Xeon
E5-1650 processor, 6 physical cores and 16GB of main memory.
All computations are parallelized using OpenMP where applicable,
most notably the collision detection and the forces projection. For
realtime performance, we simulate the system with 8 Projective Dy-
namics iterations. Simulating a frame without collisions or sticky
lips interaction takes 28ms, while frames with collisions and sticky
lips (around 120 additional constraints) take up to 40ms, making it
possible to achieve 25fps, the capture rate of our RGB camera. We
provide a breakdown of our simulation timings in Figure 7. Our two
main bottlenecks are the computation of projections, and the eval-
uation of EPD in the line search procedure. The projections cost is
still dominated by full SVD computations. Most full SVD compu-
tations take place in the first Projective Dynamics iterations of a
timestep. It should be noted that for these SVD computations, we
use the SVD method provided by the Eigen C++ library, which is
not as optimized as that of McAdams et al. [MST∗11]. Therefore,
switching to a more performant SVD implementation could bring
even more performance.

submitted to COMPUTER GRAPHICS Forum (5/2018).

V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation 11

Figure 8: Prevention of lips self-intersections. Top: results of our
system. The lips are touching but not intersecting. Bottom: results
with collision detection turned off. The lips are intersecting.

Figure 9: Comparison of the shapes of natural sticky lips phe-
nomenon and our simulated sticky lips. The latter generates plau-
sible sticky lips shapes, matching what can be observed in nature.

7.2. Simulation Results

We evaluate our performance driven facial physical simulation sys-
tem by capturing the performance of individuals in front of a we-
bcam and displaying the simulation results in realtime. Example
simulations are shown in the accompanying video. An overview of
our results is shown in Figures 14 and 15. Not only does our sys-
tem faithfully convey the expression of the user, but contrary to
previous realtime facial animation systems, our results showcase
physical simulation effects as well.

Lips self intersection One of the benefits enabled by physical
simulation is the prevention of lips self-intersections, as is shown in
Figure 8. Preventing these self-intersections issues has been show-
cased before [IKNDP16, BSC16], but our system is able to elim-
inate them while maintaining realtime performance. While it can
be argued that lips interpenetration is a subtle effect hard to notice,
detecting the contacts is also crucial for the simulation of sticky
lips.

Sticky lips Our system produces sticky lips shapes matching
those observable in the real world, as can be seen in Figure 9. Fur-
thermore, the timing of our sticky lips is also realistic, as demon-
strated in Figure 10. Since our system does not capture sticky lips

Figure 10: Comparison of the timing of natural sticky lips phe-
nomenon and our simulated sticky lips. Left: a natural sticky lips se-
quence, with frames separated by 120ms. Right: a simulated sticky
lips sequence, at the same rate.

but simulates the phenomenon, one cannot expect the system to pro-
duce the same sticky lips that would happen in the input sequence.
However, we observe that the timing of the phenomenon, as well
as its characteristics, closely matches natural sticky lips. Dynamic
results of our simulated sticky lips can be observed in the accompa-
nying video.

Non-human characters Our physical system can be used to sim-
ulate non-human faces, enabling entertaining inertial effects. We
experimented our system on a character with tentacles on the face.
Since the tentacles are not attached to the skull and are only a pas-
sive element, we disabled the skull attachment force (Section 4.2)
for tentacle vertices and excluded the tentacles from the blend-
forces matrix B. We demonstrate the interest of physical simulation
for such a character by showing that our method takes the effects
of gravity and inertial forces into account (Figure 11). We show the
results of our method versus a simple blendshape animation, and
observe that using physical simulation gives the impression of a
flesh-made character while the blendshape animation looks plastic-
made. Since the interaction with gravity can cause the tentacles to
collide, we use our contact forces to prevent self-intersection, as
shown in Figure 12. We can also use our sticky lips force (Sec-

submitted to COMPUTER GRAPHICS Forum (5/2018).

12 V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation

Figure 11: Our method enables integrating facial animation in a re-
alistic environment, allowing the tentacles of the character to react
to gravity (top). By comparison, with a plain blendshape animation
(bottom), the character seems to be plastic-made rather than flesh
made. This effect is best seen in the accompanying video.

tion 4.3) to let tentacles stick to each other for additional artisitic
effects (Figure 13).

7.3. Limitations and Future Work

Currently, the precision of our system is limited by the quality of
the underlying facial landmark tracker. When the face landmark
tracking fails, our physical simulation will maintain a natural facial
expression, but the system will not be able to match the subject’s
expression. We note that very recent facial landmarks trackers such
as OpenPose [SJMS17] could alleviate this issue. The landmark
tracker’s results suffer from jittering issues which also affect the fi-
nal animation. To the best of our knowledge, current off-the-shelf
generic facial tracking methods all suffer from this limitation, and
addressing this issue is still an actively researched topic. This jitter-
ing issue could be addressed using more intrusive, calibrated mo-
tion capture systems, but these would reduce the applicability of
our proposed method.

Contrary to the work of Ichim and colleagues, our volumetric
simulation does not take into account the full volume of the face.
While this allows us to handle non-human characters, this prevents
us from explicitly considering the articulated nature of the jaw.

In the future, we would like to investigate further performance
enhancement to our systems. Indeed, sticky lips are a phenomenon
that is best observed at higher framerates. This could be achieved
by parallelizing our Gauss-Seidel solver as in Vivace [FTP16]. Re-

Figure 12: Our system can also prevent self collisions between
the tentacles of a stylized character. Left: with collision handling.
Right: without collision handling. Without collision handling, the
tentacle would penetrate the character’s face.

cently, Yu et al. [YJL∗16] demonstrated physical simulation for in-
ternal articulators such as the tongue, and including this kind of ef-
fects would improve the realism of our method. Another interesting
improvement would be to handle the contacts between the eyelids
and the eyes, which would enforce consistency between skin de-
formation and gaze direction. As the L-BFGS method of Liu and
colleagues [LBK17] generalizes to more general elastic forces, it
would be interesting to see if our adaptive Gauss-Seidel scheme can
be used with more general materials. We also note that our blend-
forces do not encode muscular compression effects such as those
involved in a lip pucker. These kind of effects could be produced
with more advanced blendshapes-derived forces, as seen in the very
recent work of Ichim et al [IKKP17], but using this kind of forces
in a realtime setup still seems challenging.

8. Conclusion

We have presented the first performance driven realtime facial an-
imation system based on physical simulation. We introduced im-
provements to the Projective Dynamics physical simulation frame-
work, enabling the realtime simulation of a volumetric physical
face system with changing constraints. This enabled us to simu-
late complex yet perceptually essential elements of the facial perfor-
mance. We demonstrated the applicability of our system by driving
the physical simulation with realtime performance captured using a
simple RGB camera. The resulting simulation contains effects that
could not be achieved in other realtime performance driven facial
animation methods, such as sticky lips or inertial effects.

Acknowledgements

We would like to thank Carole Garnier for her implementation of
the 2D face landmark tracker, and Maxime Thomas Le Déoré and
Azuline Teulié for the blendshape models. We also wish to thank
Renaud Séguier for proof-reading the paper. We thank the review-
ers as well for their insightful comments.

submitted to COMPUTER GRAPHICS Forum (5/2018).

V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation 13

Figure 13: Applying our sticky lips process to tentacles. Gravity
causes tentacles to collide, and later on, our sticky force delays the
separation between the tentacles. This effect is best seen in the ac-
companying video.

References

[BHB∗11] BEELER T., HAHN F., BRADLEY D., BICKEL B., BEARD-
SLEY P., GOTSMAN C., SUMNER R. W., GROSS M.: High-quality
passive facial performance capture using anchor frames. In ACM SIG-

GRAPH 2011 papers (New York, NY, USA, 2011), SIGGRAPH ’11,
ACM, pp. 75:1–75:10. 2

[BHPS10] BRADLEY D., HEIDRICH W., POPA T., SHEFFER A.: High
resolution passive facial performance capture. In ACM SIGGRAPH 2010

Papers (New York, NY, USA, 2010), SIGGRAPH ’10, ACM, pp. 41:1–
41:10. 2

[BML∗14] BOUAZIZ S., MARTIN S., LIU T., KAVAN L., PAULY M.:
Projective dynamics: Fusing constraint projections for fast simulation.
ACM Trans. Graph. 33, 4 (July 2014), 154:1–154:11. 1, 3, 7

[BSC16] BARRIELLE V., STOIBER N., CAGNIART C.: Blendforces: a
dynamic framework for facial animation. Computer Graphics Forum

(Proceedings of Eurographics 2016) 35, 2 (2016). 1, 3, 4, 5, 11

[BWP13] BOUAZIZ S., WANG Y., PAULY M.: Online modeling for re-
altime facial animation. ACM Trans. Graph. 32, 4 (2013), 40:1–40:10.
2

[CBE∗15] CONG M., BAO M., E. J. L., BHAT K. S., FEDKIW R.: Fully
automatic generation of anatomical face simulation models. In Proceed-

ings of the 14th ACM SIGGRAPH / Eurographics Symposium on Com-

puter Animation (New York, NY, USA, 2015), SCA ’15, ACM, pp. 175–
183. 3

[CBF16] CONG M., BHAT K. S., FEDKIW R.: Art-directed muscle
simulation for high-end facial animation. In Proceedings of the ACM

Figure 14: Our system in action, targeting a hyman character. Our
method enables the realtime transfer of facial performance from a
webcam feed, while enhancing the realism of the resulting anima-
tion with physical simulation. The simulated physical effects are
the prevention of lips self intersection, the sticky lips effect.

Figure 15: Our system in action, targeting a non-human character.
Our physical simulation enables the prevention of tentacles self in-
tersection, sticky tentacles, and models the influence of gravity on
tentacles.

SIGGRAPH/Eurographics Symposium on Computer Animation (Aire-la-
Ville, Switzerland, Switzerland, 2016), SCA ’16, Eurographics Associa-
tion, pp. 119–127. 3

[CBZB15] CAO C., BRADLEY D., ZHOU K., BEELER T.: Real-time
high-fidelity facial performance capture. ACM Trans. Graph. 34, 4 (July
2015), 46:1–46:9. 2

[CHZ14] CAO C., HOU Q., ZHOU K.: Displaced dynamic expression re-
gression for real-time facial tracking and animation. ACM Trans. Graph.

(2014). 2

[CWLZ13] CAO C., WENG Y., LIN S., ZHOU K.: 3d shape regression
for real-time facial animation. ACM Trans. Graph. 32, 4 (2013), 41:1–
41:10. 2

[CWZ∗14] CAO C., WENG Y., ZHOU S., TONG Y., ZHOU K.: Face-
warehouse : a 3d facial expression database for visual computing. IEEE

TVCG 20, 3 (2014), 413–425. 2, 4

submitted to COMPUTER GRAPHICS Forum (5/2018).

14 V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation

[FJA∗14] FYFFE G., JONES A., ALEXANDER O., ICHIKARI R., DE-
BEVEC P.: Driving high-resolution facial scans with video performance
capture. ACM Trans. Graph. 34, 1 (Dec. 2014), 8:1–8:14. 2

[FTP16] FRATARCANGELI M., TIBALDO V., PELLACINI F.: Vivace a
practical gauss-seidel method for stable soft body dynamics. ACM Trans.

Graph. 35, 6 (Nov. 2016), 214:1–214:9. 3, 12

[HMYL15] HSIEH P.-L., MA C., YU J., LI H.: Unconstrained realtime
facial performance capture. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2015), pp. 1675–1683. 2

[IKKP17] ICHIM A.-E., KADLEČEK P., KAVAN L., PAULY M.: Phace:
Physics-based face modeling and animation. ACM Transactions on

Graphics (TOG) 36, 4 (2017). 3, 12

[IKNDP16] ICHIM A.-E., KAVAN L., NIMIER-DAVID M., PAULY M.:
Building and animating user-specific volumetric face rigs. In Proceed-

ings of the ACM SIGGRAPH/Eurographics Symposium on Computer An-

imation (Aire-la-Ville, Switzerland, Switzerland, 2016), SCA ’16, Euro-
graphics Association, pp. 107–117. 1, 2, 3, 5, 6, 11

[KBB∗17] KOZLOV Y., BRADLEY D., BÃĎCHER M.,
THOMASZEWSKI B., BEELER T., GROSS M.: Enriching facial
blendshape rigs with physical simulation. Computer Graphics Forum

(Proc. Eurographics) 36, 2 (2017). 3

[KGC∗96] KOCH R. M., GROSS M. H., CARLS F. R., VON BÃIJREN

D. F., FANKHAUSER G., PARISH Y. I. H.: Simulating facial surgery
using finite element models. In Proceedings of the 23rd Annual Confer-

ence on Computer Graphics and Interactive Techniques (New York, NY,
USA, 1996), SIGGRAPH ’96, ACM, pp. 421–428. 3

[KGPG96] KEEVE E., GIROD S., PFEIFLE P., GIROD B.: Anatomy-
based facial tissue modeling using the finite element method. In Pro-

ceedings of the 7th Conference on Visualization ’96 (Los Alamitos, CA,
USA, 1996), VIS ’96, IEEE Computer Society Press, pp. 21–ff. 3

[KS14] KAZEMI V., SULLIVAN J.: One millisecond face alignment with
an ensemble of regression trees. In Proceedings of the 2014 IEEE Con-

ference on Computer Vision and Pattern Recognition (Washington, DC,
USA, 2014), CVPR ’14, IEEE Computer Society, pp. 1867–1874. 4

[LAR∗14] LEWIS J., ANJYO K., RHEE T., ZHANG M., PIGHIN F.,
DENG Z.: Practice and theory of blendshape facial models. Eurograph-

ics (2014). 1

[LBK17] LIU T., BOUAZIZ S., KAVAN L.: Quasi-newton methods for
real-time simulation of hyperelastic materials. ACM Trans. Graph. 36, 3
(2017), 23:1–23:16. 3, 6, 8, 12

[LBOK13] LIU T., BARGTEIL A. W., O’BRIEN J. F., KAVAN L.: Fast
simulation of mass-spring systems. ACM Transactions on Graphics 32,
6 (Nov. 2013), 209:1–7. Proceedings of ACM SIGGRAPH Asia 2013,
Hong Kong. 3

[LKA∗17] LAINE S., KARRAS T., AILA T., HERVA A., SAITO S., YU

R., LI H., LEHTINEN J.: Production-level facial performance capture
using deep convolutional neural networks. In Proceedings of the ACM

SIGGRAPH / Eurographics Symposium on Computer Animation (New
York, NY, USA, 2017), SCA ’17, ACM, pp. 10:1–10:10. 2

[LTO∗15] LI H., TRUTOIU L., OLSZEWSKI K., WEI L., TRUTNA T.,
HSIEH P.-L., NICHOLLS A., MA C.: Facial performance sensing head-
mounted display. ACM Transactions on Graphics (Proceedings SIG-

GRAPH 2015) 34, 4 (July 2015). 2

[LXB16] LI Y., XU H., BARBIČ J.: Enriching triangle mesh animations
with physically based simulation. IEEE Transactions on Visualization

and Computer Graphics (2016). 3

[LXC∗15] LIU Y., XU F., CHAI J., TONG X., WANG L., HUO Q.:
Video-audio driven real-time facial animation. ACM Trans. Graph. 34, 6
(Oct. 2015), 182:1–182:10. 3

[LYYB13] LI H., YU J., YE Y., BREGLER C.: Realtime facial animation
with on-the-fly correctives. ACM Trans. Graph. 32, 4 (2013), 42:1–42:10.
2

[MBCM16] MÃIJLLER M., BENDER J., CHENTANEZ N., MACKLIN

M.: A robust method to extract the rotational part of deformations. In
Proceedings of the 9th International Conference on Motion in Games

(New York, NY, USA, 2016), MIG ’16, ACM, pp. 55–60. 3

[MST∗11] MCADAMS A., SELLE A., TAMSTORF R., TERAN J.,
SIFAKIS E., STUDIOS W. D. A.: Computing the Singular Value De-

composition of 3× 3 matrices with minimal branching and elementary

floating point operations. Tech. rep., 2011. 3, 10

[MTGG11] MARTIN S., THOMASZEWSKI B., GRINSPUN E., GROSS

M.: Example-based elastic materials. In ACM SIGGRAPH 2011 Papers

(New York, NY, USA, 2011), SIGGRAPH ’11, ACM, pp. 72:1–72:8. 4

[MWF∗12] MA W.-C., WANG Y.-H., FYFFE G., CHEN B.-Y., DE-
BEVEC P.: A blendshape model that incorporates physical interaction.
Comput. Animat. Virtual Worlds 23, 3-4 (2012), 235–243. 3

[NOB16] NARAIN R., OVERBY M., BROWN G. E.: ADMMâŁĞ projec-
tive dynamics: fast simulation of general constitutive models. In Proceed-

ings of the ACM SIGGRAPH/Eurographics Symposium on Computer An-

imation (2016), Eurographics Association, pp. 21–28. 3

[NW06] NOCEDAL J., WRIGHT S. J.: Numerical Optimization. Springer
Verlag, 2006. 7

[OLSL16] OLSZEWSKI K., LIM J. J., SAITO S., LI H.: High-fidelity fa-
cial and speech animation for VR HMDs. ACM Transactions on Graph-

ics (Proceedings SIGGRAPH Asia 2016) 35, 6 (Dec. 2016). 2

[PB81] PLATT S. M., BADLER N. I.: Animating facial expressions. In
Proceedings of the 8th Annual Conference on Computer Graphics and

Interactive Techniques (New York, NY, USA, 1981), SIGGRAPH ’81,
ACM, pp. 245–252. 3

[PL00] PAPADOPOULO T., LOURAKIS M. I.: Estimating the jacobian of
the singular value decomposition: Theory and applications. In European

Conference on Computer Vision (2000), Springer, pp. 554–570. 8, 9, 15

[RJ07] RIVERS A. R., JAMES D. L.: FastLSM: Fast lattice shape match-
ing for robust real-time deformation. ACM Trans. Graph. 26, 3 (July
2007). 3

[SJMS17] SIMON T., JOO H., MATTHEWS I., SHEIKH Y.: Hand key-
point detection in single images using multiview bootstrapping. In CVPR

(2017). 12

[SNF05] SIFAKIS E., NEVEROV I., FEDKIW R.: Automatic determina-
tion of facial muscle activations from sparse motion capture marker data.
In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005), SIG-
GRAPH ’05, ACM, pp. 417–425. 1, 3

[TW93] TERZOPOULOS D., WATERS K.: Analysis and synthesis of fa-
cial image sequences using physical and anatomical models. IEEE Trans.

Pattern Anal. Mach. Intell. 15, 6 (1993), 569–579. 3

[TZN∗15] THIES J., ZOLLHÃŰFER M., NIESSNER M., VALGAERTS L.,
STAMMINGER M., THEOBALT C.: Real-time expression transfer for
facial reenactment. ACM Transactions on Graphics (TOG) 34, 6 (2015).
4

[TZS∗16] THIES J., ZOLLHÃŰFER M., STAMMINGER M., THEOBALT

C., NIESSNER M.: Face2face: Real-time face capture and reenactment
of rgb videos. Proc. Computer Vision and Pattern Recognition (CVPR),

IEEE (2016). 2

[Wan15] WANG H.: A Chebyshev semi-iterative approach for accelerat-
ing projective and position-based dynamics. ACM Trans. Graph. 34, 6
(Oct. 2015), 246:1–246:9. 3, 5, 6, 8

[Wat87] WATERS K.: A muscle model for animation three-dimensional
facial expression. In Proceedings of the 14th Annual Conference on Com-

puter Graphics and Interactive Techniques (New York, NY, USA, 1987),
SIGGRAPH ’87, ACM, pp. 17–24. 3

[WBGB16] WU C., BRADLEY D., GROSS M., BEELER T.: An
anatomically-constrained local deformation model for monocular face
capture. ACM Trans. Graph. 35, 4 (July 2016), 115:1–115:12. 2

[WBLP11] WEISE T., BOUAZIZ S., LI H., PAULY M.: Realtime
performance-based facial animation. ACM Transactions on Graphics

(Proceedings SIGGRAPH 2011) 30, 4 (2011). 2

submitted to COMPUTER GRAPHICS Forum (5/2018).

V. Barrielle & N. Stoiber / Realtime Performance Driven Physical Simulation for Facial Animation 15

[WMG96] WEISS J. A., MAKER B. N., GOVINDJEE S.: Finite element
implementation of incompressible, transversely isotropic hyperelasticity.
Computer methods in applied mechanics and engineering 135, 1 (1996),
107–128. 5

[WSXC16] WANG C., SHI F., XIA S., CHAI J.: Realtime 3d eye gaze
animation using a single rgb camera. ACM Trans. Graph. 35, 4 (July
2016), 118:1–118:14. 3

[WY16] WANG H., YANG Y.: Descent methods for elastic body simula-
tion on the gpu. ACM Trans. Graph. 35, 6 (Nov. 2016), 212:1–212:10.
3

[YJL∗16] YU J., JIANG C., LI R., LUO C. W., WANG Z. F.: Real-
time 3d facial animation: From appearance to internal articulators. IEEE

Transactions on Circuits and Systems for Video Technology PP, 99
(2016), 1–1. 12

Appendix A: SVD Jacobian derivation

In this annex we derive the closed form expressions of the SVD Ja-
cobian for a “centered” deformation gradient. To this end, we recall
results from Papadopoulo and Lourakis [PL00]. For a 3×3 matrix
C with elements (Ci j)i, j , let ŨΣ̃ΣΣṼT be its SVD. The Jacobian for
the SVD diagonal is defined by:

∂d̃k

∂Ci j
= ũik ṽ jk. (25)

The Jacobians for the rotation matrices are given by:

∂Ũ

∂Ci j
= ŨΩΩΩ

i j

Ũ

∂Ṽ

∂Ci j
=−ṼΩΩΩ

i j

Ṽ
,

(26)

where the matrices ΩΩΩ
i j

Ũ
and ΩΩΩ

i j

Ṽ
are defined by the linear systems:







d̃lΩΩΩ
i j

Ũkl
+ d̃kΩΩΩ

i j

Ṽkl
= ũik ṽ jl

d̃kΩΩΩ
i j

Ũkl
+ d̃lΩΩΩ

i j

Ṽkl
= −ũil ṽ jk.

(27)

In our case, C = UT FV, the matrices Ũ and Ṽ are the identity,
which gives a trivial diagonal Jacobian:

∂Σ̃ΣΣ

∂C
=





1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0



 , (28)

where we vectorize the matrix C in row-order fashion. Simi-
larly, equation 27 is greatly simplified, with only four possi-
ble right-hand sides: (0,0)T ,(1,0)T ,(0,−1)T ,(1,−1)T . For right-

hand sides (1,0)T ,(0,−1)T , the solutions are of the form:














ΩΩΩ
i j

Ũkl
=

1
2

(

s

d̃k + d̃l

+
1

d̃k − d̃l

)

ΩΩΩ
i j

Ṽkl
=

1
2

(

−
s

d̃k + d̃l

+
1

d̃k − d̃l

)

,

(29)

for k and l such that |d̃k| 6= |d̃l | and with s = ±1. For the (1,−1)T

right-hand side, the solution is:














ΩΩΩ
i j

Ũkl
=

1

d̃k − d̃l

ΩΩΩ
i j

Ṽkl
= −

1

d̃k − d̃l

,

(30)

again with diagonal values of different magnitudes. As suggested
by Papadopoulo and Lourakis [PL00], the equality case must be
handled with a least-squares solve. This least-squares solve has a
closed form solution as well. Suppose d̃k = ±d̃l . Then only the
(1,0)T ,(0,−1)T right-hand sides yield nonzero solutions, of the
form:

ΩΩΩ
i j

Ũkl
= ΩΩΩ

i j

Ṽkl
=±

1
2

1

d̃k ± d̃l

. (31)

In practice, since we’re only interested in the Euler angles Ja-
cobian J defined in Section 6.2, we don’t need to compute the
solutions from equation 30 (these values correspond to all-zeros
columns in equation 23). Putting aside the equality case, the close
form for the values J = (j0, j1, j2, j3, j4, j5)

T is:


























































































j0 =
1
2

(

1

d̃2 + d̃1
+

1

d̃2 − d̃1

)

j1 =
1
2

(

−
1

d̃2 + d̃1
+

1

d̃2 − d̃1

)

j2 =
1
2

(

−
1

d̃2 + d̃0
−

1

d̃2 − d̃0

)

j3 =
1
2

(

1

d̃2 + d̃0
−

1

d̃2 − d̃0

)

j4 =
1
2

(

1

d̃1 + d̃0
+

1

d̃1 − d̃0

)

j5 =
1
2

(

−
1

d̃1 + d̃0
+

1

d̃1 − d̃0

)

.

(32)

Equation 31 informs us that in case of equal diagonal values, the
fraction that would become undefined should be replaced by zero.

submitted to COMPUTER GRAPHICS Forum (5/2018).

