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Figure 1: Editing pipeline. An interactive interface enables the user to easily edit meaningful control parameters that are
automatically mapped to a realistic facial animation.

ABSTRACT
Over the past few years, the automatic generation of facial anima-
tion for virtual characters has garnered interest among the anima-
tion research and industry communities. Recent research contribu-
tions leverage machine-learning approaches to enable impressive
capabilities at generating plausible facial animation from audio
and/or video signals. However, these approaches do not address
the problem of animation edition, meaning the need for correcting
an unsatisfactory baseline animation or modifying the animation
content itself. In facial animation pipelines, the process of editing an
existing animation is just as important and time-consuming as pro-
ducing a baseline. In this work, we propose a new learning-based
approach to easily edit a facial animation from a set of intuitive
control parameters. To cope with high-frequency components in
facial movements and preserve a temporal coherency in the ani-
mation, we use a resolution-preserving fully convolutional neural
network that maps control parameters to blendshapes coefficients
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sequences. We stack an additional resolution-preserving anima-
tion autoencoder after the regressor to ensure that the system
outputs natural-looking animation. The proposed system is robust
and can handle coarse, exaggerated edits from non-specialist users.
It also retains the high-frequency motion of the facial animation.
The training and the tests are performed on an extension of the
B3D(AC)ˆ2 database [10], that we make available with this paper
at http://www.rennes.centralesupelec.fr/biwi3D.
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Figure 2: System overview. Our editing system allows a non-
specialist user to easy and quickly interfere in the tradi-
tional facial animation pipeline to refine an animation.

1 INTRODUCTION
Producing a convincing facial animation for a virtual character
is a tedious and time-consuming task which requires talent and
experience, both rare resources. Many works have been conducted
in the field of animation research to come up with automatic facial
animation generation systems that would accelerate this process.
Traditionally, automatic animation systems consist in an end-to-end
pipeline, taking as input either audio [34], image or text [29], and
generating a full sequence of animation data (typically as a sequence
of blendshapes coefficients). Although impressive results have been
reached, it is common to require human intervention to refine this
baseline animation, either to correct mistakes or to make some
adjustment to adapt the motion to another artistic intent. These
modifications are done by an animator trained in manipulating low
level 3D animation parametrization such as blendshapes coefficients.
This edition pipeline implies technical and artistic skills, as well
as a considerable amount of time to end up with a coherent and
satisfactory final animation.

In this paper, we present an editing tool that allows non-specialist
users to easily and quickly refine an existing animation. The main
challenge in facial animation is to ensure the naturalness of the
motion. Indeed, the human are experts at observing faces and can
detect even subtle implausible movements, notably the missing of
lip contact when the mouth closes during a speech. We develop a
machine-learning-based approach that learn from a dataset, and
trains to produce natural-looking animation from a small set of
input parameters. By training on natural animation space-time
patterns, our system learns to preserve the temporal coherency
of the motion and ensure smooth and continuous animation. As
contributions such as Seol et al. [27], our system is designed to be
efficiently integrated in the traditional facial animation pipeline as
shown in Figure 2. However, unlike Seol et al. [27] who focuses on
producing an efficient system dedicated to a professional use, our
goal is to provide an alternative solution for non-specialist users.
We specifically design our system to be robust to inadequate user
edits, and handle exaggerate or conflicting inputs. Besides, instead
of complicated facial control parameterizations we propose to use
intuitive high-level control parameters as input to the system, such
as specifying the distance between the lips over time. The system
runs at low latency, enabling us to create a graphical interface for

users to interactively modify the output animation until getting a
satisfying result.

One challenge when dealing with facial animation is to preserve
the high-frequency patterns of the motion, as they are responsible
for important communication cues (eye closures, lip contacts). This
is particularly true for learning-based solutions, that leverage large
datasets of complex, possibly conflicting animation patterns [13].
Among the shortcomings of these solutions is the ability to preserve
the different frequency components of the animation and to adapt
the behavior of the system to inconsistent inputs. In this work,
we define an architecture based on a fully convolutional network
with skip layers designed specifically to preserve high-frequency
components. Besides, we aim at a system that is resilient to coarse
editing by non-specialist users. To that end, we train an additional
denoising autoencoder that we stack at the end of the network to
ensure a natural-looking final animation output.

In order to be a suitable solution for non-expert users to create
powerful facial animation pipelines, an editing tool has to meet
the following requirements: 1. Usability: a user should be able to
personalize a 3D animation without advanced animation skills. The
number of control parameters should be small, and those should
be meaningful and easy to manipulate. The system should run fast
enough to enable interactive editing. The user can then iteratively
modify its animation, either by editing a few frames or by impos-
ing full-sequence constraints, until a satisfying result is produced
(see Section 5.4). 2. Plausibility: the complex space-time patterns
of human facial motion should be respected (see Section 5.1). In
particular, high-frequency facial movements should be present. 3.
Robustness: the final animation should remain plausible regardless
of the user modifications (see Section 5.3). 4. Subject and content in-
dependent: any type and style of facial animation should be able to
be edited (see Section 5.2). In the following sections, we describe a
learning-based editing system that addresses all these requirements.

Our machine-learning system relies on a dataset of facial anima-
tion sequences. To train the full system, we worked on modifying
and extending the existing 3D facial animation dataset B3D(AC)ˆ2
database [10]. We will release the extended dataset for reproducibil-
ity of our results.

Our contributions are:

• A new facial animation editing system based on convolu-
tional neural networks, which enables to quickly edit a tem-
poral talking facial animation with few intuitive control pa-
rameters. Based on a time resolution-preserving architecture,
our system is capable of generating complex and plausible
facial motion pattern. The proposed framework features a
regressor designed to map low dimensional control param-
eters to blendshapes coefficients sequences. It is followed
by an autoencoder meant to ensure the naturalness of the
outputted animation sequences.

• A robust solution dedicated to non-specialist users that is
resilient to implausible inputs constraints. We use a denois-
ing training strategy to improve the reliability of our system.
The originality comes from the indirect noisy inputs used to
train the stacked autoencoder, and an additional loss term
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encouraging mouth closure preservations during talking fa-
cial animations.

• The release of our enhanced 3D audiovisual animation data-
base from Fanelli et al. [10] with notably a parameterization
of the animations with the widely-used blendshapes formal-
ism. With the use of a professional software we added 2D
eyelids and mouth annotations and improved the overall
quality of the animation and the depiction of cues such as
eyelids and lip contacts.

2 RELATEDWORK
In the professional world, animation edition is done by directly ma-
nipulating the temporal curves of complex facial parameterizations
(blendshapes coefficients being an industry-standard parametriza-
tion). Hence, traditional animation production requires animators
with technical and artistic skills, experience and remains time-
consuming even for those. Previous works have addressed this
problem by providing efficient animation editing systems either
based on geometry-driven approaches or data-driven approaches.

2.1 Geometric animation edition
Early facial expression manipulation approaches are based on key
frames edition. The key frames can be made of linear combinations
of face meshes coming from a pre-captured database [6, 15, 32, 33].
The goal is to find the blending weights corresponding to user
constraints. In these approaches, the user manipulates 2D control
points which are either image features [33], motion markers [15]
or the 2D projection of 3D vertices [6, 32]. Other works consider
the key frame editing problem as solving the 3D vertices position
of the edited mesh. To reduce the dimension of the facial model,
Lau et al. [17] used PCA to obtain a subspace representation. Then,
they derived the 3D face vertices positions from strokes, points or
curves constraints drawn by the users on a 2D screen. An alter-
native to PCA to obtain a semantically meaningful data represen-
tation is the Independent Component Analysis (ICA) [4, 23]. This
parametrization gives the possibility to distinguish between edit-
ing facial emotional components and speech-related components.
More recent works develop editing systems that can be easily inte-
grated in the animation pipeline. The animation editing problem
consists in finding the underlying blendshapes coefficients. The
users directly manipulate the vertices of the mesh [2, 18, 30] or
draw 2D strokes on a screen [5]. The number of users constraints
is generally smaller than the blendshapes model parameters, the
optimization problem is thus regularized through different criteria:
by constraining the value of the blendshapes coefficients [18], by
using a statistical model [2, 31], by constructing an orthogonal
blendshapes model [21], by using geometric constraints [25] or
by adding face areas boundary constraints [30]. To improve the
applicability of the edited method, most of the previous works seg-
ment the face into hierarchical regions a priori [15, 21, 23, 33], or a
posteriori using an influence map for each control points [6, 32], or
else using the ICA transform for decorrelation [4].
These methods are mainly frame-based and most of them do not
consider the temporal consistency of movements.

To overcome that limitation, there are works dealing with the
dynamic nature of animation data, instead of performing edition
on static expressions. Li and Deng [21] propose sequence edition
by fitting a Catmull-Rom spline on the edited blendshapes weight
sequences. This technique does not necessarily preserve the nat-
uralness of the motion, as nothing encourages the motion to be
physically correct. Inspired from space-time constraints body mo-
tion systems [11], Ma and colleagues [23] create a style learning
editing framework. The editing of style is applied to similar frames
in the sequence. While it is an efficient solution to reduce time spent
in the animation editing process, this solution does not ensure tem-
poral coherency. Applying the same edit to similar frames with a
different context leads to inconsistent motion. Seol et al. [27] and
Akhter et al. [1] propose a temporal solution to propagate the edits
across the surrounding frames by solving a movement matching
equation or by using a spatiotemporal bilinear model. Although,
these methods provide smooth results, their temporal resolution
depends on hyperparameters that need to be manually adjusted
rendering the editing task more difficult to tune. Moreover, the sys-
tem of Seol et al. [27] is not robust to inconsistent users edits. For
example, in the case of exaggerated user constraints, this method
generates implausible animations. As we target non-specialist users,
our system needs to ensure the final motion to be realistic.

2.2 Data-based animation edition
In contrast to keyframe-based geometric editing methods, space-
time methods consider the manipulation of entire temporal motion
data-blocks. An effective technique to perform temporal coherent
edition and generation is motion graphs [16, 32]. This technique
consists in building a graph where nodes encode static poses or
short-term motion blocks. The graph can be navigated to recreate
plausible animation sequence. The edges between nodes encode
the likelihood of the transition between those two blocks being
plausible, so realistic animation reconstruction consist in finding
paths of minimal cost in the graph. While motion graph is a rel-
evant technique for our purpose, it imposes high memory usage
as it requires retaining the whole graph for inference. Moreover, a
balance has to be achieved between expressivity, which can be ob-
tained by a graph with a large number of connections, and physical
consistency, which is better enforced with a sparser graph featuring
only consistent transitions.

More recent works in the line of data-basedmethod have adopted
newmodels for space-time humanmotion editing systems. The first
one to propose a fully learning-based human motion editing sys-
tem is the seminal work of Holden et al. [13]. They map high level
control parameters to a learned body motion manifold presented
earlier by the same authors [14]. Navigating this manifold of body
motion allows to easily alter and control body animations, while
preserving their plausibility. Recently, Habibie and colleagues [12],
as well as Martinez and coworkers [24], designed state-of-the art dy-
namic motion modeling systems, demonstrating the high potential
of learning-based approach in human motion manipulation.

Closest to our work, tackling the same challenge of editing an an-
imation using simple high level parameters, is the work of Holden
et al. [13]. Unlike body motion however, facial motions have a
lot of high-frequency temporal components such as blinking, lips
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Figure 3: System description. (Top) At train time, fixing the parameters of the regressor, the autoencoder learns to reconstruct
the initial blendshape weights from the noisy meaningful control parameters. (Bottom) At test time, the edited control pa-
rameters lead to an accurate blendshapes weights sequence thank to the regressor. The stacked autoencoder allows inaccurate
edition ensuring a realistic edited animation.

synchronization, and mouth closures. Although the system of [13]
demonstrated impressive results on body motion, we found that
their architecture is not particularly suited to this particular aspect
of facial animation. Using it in our scenario leads to over-smoothed,
unappealing facial animations, which we illustrate in Section 5.
We therefore adapt this approach for the purpose of facial motion,
and tackle the high-frequency issue using a resolution-preserving
neural network. Ourwork is based on a one dimensional fully convo-
lutional network inspired from Ronnenberger and colleagues [26],
with skip connections between the down-sampling and the up-
sampling parts in order to preserve high-frequency details. To the
best of our knowledge, we are the first to study a temporal editing
system based on a resolution-preserving neural network.

The remainder of the paper is organized as follows. In Section 3,
we will present the dataset work we have conducted, which en-
abled us to train and test our model. We then describe our model in
Section 4. We focus particularly on the benefit of the added autoen-
coder and the specific way of training it. We compared our system
with related works in Section 5 and conducted several experiments
highlighting the performance and benefits of our architecture. Fi-
nally, we demonstrate the usability of our framework in a realistic
animation production pipeline.

3 DATASET PREPARATION
For our experiments, we use the 3D Audio-Visual Corpus of Af-
fective Communication [10], which contains 3D scans and RGB
images of 14 actors reciting 40 sentences with and without emotion.
However, the quality of scan data prevents us from having a good
depiction of subtle mouth closures and blinking. Those are however
crucial to verbal and non-verbal communicational cues that facial
animation convey. Besides, in order to integrate this tool to the
traditional facial animation pipeline, we want facial expressions
to be encoded through the standard blendshapes parametrization,
which will be used as input to our system.

We address the above issues by fitting a common deformable
template, with a sparser mesh, to the neutral geometry of each actor.
Then, we transfer a blendshape model onto the aligned deformable

template.

The alignment consists of three stages. First, we align a 3D
morphable model [3] with the neutral mesh of each actor using
a non-rigid ICP algorithm, optimizing the pose and the identity
coefficients. Inspired by Li et al. [20], we improve the quality of
the alignment around the mouth and eyelids using 2D image land-
marks information for each frame, obtained with a commercial
face tracking software [9], still optimizing for pose and identity
coefficients. We further refine the process by optimizing the ver-
tices directly, through a non-rigid ICP with Laplacian prior [19].
Then, using deformation transfer [28], we transfer a pre-existing
blendshape model sharing the topology of the morphable model
onto the deformed mesh. At this point, we obtain a subject-specific
blendshapes model for the 14 actors. Finally, we derive our final
dataset of 29 blendshapes animation weights by fitting the model
on the tracked 2D landmarks in each frame of each actors’ video
performance using [9].

4 SYSTEM DESCRIPTION
In this section, we describe our facial animation editing system in
more detail. First, we justify the choice of the control parameters
which constitutes the input of our system. Then, we elaborate on
the structure of the neural network that forms the heart of our
system. The network is composed of two parts. The first part is a
regressor which maps high-level inputs to a blendshapes weights
sequences. The second one is a stacked autoencoder that cleans the
blendshapes weights sequence to ensure a realistic final animation.
Both are fully convolutional, and operate on space-time signals,
meaning they perform temporal convolutions on a time window of
their input parameters.

4.1 Meaningful high-level control parameters
We aim at a system that takes intuitive high-level parameters as
input, for users to easily translate their desired modifications into
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animation. Particularly important in facial animation is the ren-
dition of speech, so we want the control parameters to be able to
specify all plausible mouth shapes that occur during natural speech.
These parameters have to be simple and meaningful to be intu-
itively manipulated by non-professional users. Thus, we choose
eight inter-vertex distances shown in Figure 4 as our control pa-
rameters. The horizontal and vertical inner-lips distances as well as
the eyelids distances determine the state of mouth/eye closure, two
important expressive cues. To enable editing the emotional expres-
siveness of the animation such modifying the smile intensity, we
add the distance between the upper-lip center and the mouth cor-
ners. The lips protrusion, activated by pronouncing palate sounds
such as "sh or ch" or doing a kiss shape are manipulated with the
distances between the nose bridge and the upper-lip center and
between the chin and the bottom-lip center. We found this to be a
rather minimal set for our approach. Less parameters would result
in ambiguous specifications for face shape, leading to a noisy re-
gressor output. In this work we always measure those distances on
a blendshapes-based character with fixed morphology. This ensures
that the distance patterns we extract from the dataset’s animations
of section 3 are actor-independent.

While our network can learn full-face motion patterns, we found
that generalization of the results is improved if we split the facial
controls in three groups that exhibit low motion correlation with
each other in the database: lower-face, upper-face and eyelids. An
independent network will be trained for each group, with its own
relevant high-level control parameters as input, and appropriate
blendshapes coefficients as output. This splitting of the face is
common in previous research works and practical applications [15,
32].

Figure 4: Eight meaningful control parameters extracted
from the mesh.

4.2 Regression from low dimension control
parameters to blendshapes weights

Motivated by the observation that facial animation is composed of
high-frequency features, we moved away from previous motion-
modeling network architectures and built a resolution-preserving
neural network to regress the control parameters (cдt ) to blend-
shapes weights wr eд as shown in Figure 3. The value for control
parameters have been calculated on a fixed morphology character,

animated with the blendshapes weights (wдt ) extracted from the
database.

The regressor is a fully one-dimensional convolutional neural
network with skip layers, a structure sometimes loosely described
as U-net. Its architecture is depicted in Figure 5a. We use one-
dimensional max-pooling layers and up-sampling layers to respec-
tively down-sample and up-sample the temporal dimension. Each
convolutional block in Figure 5 is composed of a batch normaliza-
tion layer, a convolutional layer and the elu activation function [7].
As input to the regressor we use a time-window of 64 frames. We ex-
tract those windows from complete sequences with a time-overlap
ratio of 0.75. As preprocessing, we subtract the mean controller val-
ues calculated on the whole trainset. All the filters in the network
have a size of 3. Our loss function is composed of two terms [13]:
the mean square error (MSE) between the wдt and wr eд , LMSE ,
and a L2 regularization on the weights β ∗ Lr eд . We set the trade-
off parameter β equals to 1. We employ the Adam optimizer for
training with a batch size of 128 and an initial learning rate of 0.001
with a decay ratio of 0.95 every five consecutive epochs with no
validation loss improvement.

We use sequences from 13 subjects of the dataset to train our
network. This amounts to around 85 minutes of facial animation,
which we split into a training set and a validation with a 0.95 ratio.
The final state of the network we conserve is the epoch the lowest
validation loss.

Figure 5: Architecture of the regressor (a) and the autoen-
coder (b)

4.3 Autoencoder for ensuring the naturalness
of the animation

Our network features an animation autoencoder whose role is
to clean-up the output of the regressor. Our regressor is a rather
straightforward mapping network, so it will faithfully transcribe
any user command, easily extrapolating to cases of unrealistic facial
animation. However, we opted for a robust system, which would
unsure staying in a realistic animation space no matter the user
input. The added autoencoder serves that purpose. Its architecture
is depicted in Figure 5b.

Ensuring that the network produces realistic animation is due to
both the presence of the autoencoder and to the following denois-
ing training strategy. Training autoencoders as denoisers -meaning
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feeding themwith noised inputs and clean outputs- is common prac-
tice, but we found that the resulting autoencoder is very dependent
on the noise characteristics. In our case, since the noise is supposed
to mimic unrealistic user inputs, we found it difficult to find a good
noise model. Instead we chose to train the whole end-to-end system
as a denoiser, while keeping the regressor weights constant (except
the statistics of the batch normalization layers) and optimize the
autoencoder’s weights to reconstruct wдt . In practice, we modify
around 20% of the control parameter inputs of the regressor cдt (see
Figure 3) with salt-and-pepper noise. We found that this creates
noisy animation patterns for the autoencoder to train to clean-up
that are closer to what the system would encounter in a real run-
time scenario. For the autoencoder to conserve the high-frequency
features of the regressed output we use a convolutional architecture
similar to that of the regressor (Figure 5).

The blendshapes parameterization is not the most representative
of the importance of each movement they encode. Movements such
as mouth openings/closures carry more expressive and communi-
cational weight than others such as nose movements. The loss that
our network learns to minimize should reflect this aspect. To the
MSE loss on all blendshapes coefficients we therefore add a loss on
the difference between some intervertices distances on the model
animated with wдt and wout .

L = LMSE + α ∗ Ldistance (1)
Typically, Ldistance measures the distances between the lips,

and between the eyelids. This term helps ensuring an accurate
mouth closure during a talking facial animation [22]. For our ex-
periments, the parameter α is set to 1. Training the model takes
less than 2 hours on a NVIDIA GeForce GTX 1070 GPU.

5 EXPERIMENTS & RESULTS
In this section, we present experimental results of our facial anima-
tion editing system. First, we evaluate our system by comparing
its integrity to the recent related work of [13], which addresses a
similar set of requirements, albeit for body animation applications.
We retained their system’s architecture, adapting it for our specific
inputs and outputs. The discrepancy between quantitative measures
and qualitative look of the animations lead us to use special metrics
for a more complete comparison (Section 5.1). This comparison
confirms the suitability of the proposed neural network system for
the purpose of facial animation, as well as its capacity to create
plausible facial animation preserving the complex dynamic of the
facial movements.

To assess the data-dependency and reproducibility of our system,
we apply it on a different recently released database (see Section 5.2)
and measure quantitative performance. In Section 5.3, we study
the robustness of our system to implausible user constraints, and
analyze the role of the system’s components. Finally, as our system
runs with low latency, we demonstrate in Section 5.4 its potential
as an interactive animation tool by showing examples of edition
performed on animations resulting of facial tracking.

5.1 Comparison with state-of-the-art approach
Our system is designed for animation edition and control, but it
will only be useful if its architecture can handle and represent

Table 1: Quantitative comparison between the regressor and
the full system on the test set.

MSE (lower face) MSE (eyelids)

Regressor only 0.0028 0.0064
Holden et al. [13] 0.004 0.009

Our system 0.0082 0.0086

sufficiently varied facial motion. Of particular interest is the ability
to preserve the high-frequency components of facial animation,
which are important for human communication. In practice, we
evaluate how close the generated animation wc is to ground-truth
wдt when the edited control parameters ce are kept unchanged,
equal to cдt (see Figure 3). We evaluate this metric on the whole
database using the leave-one-subject-out strategy.

To our knowledge, there is no work directly addressing the prob-
lem of high-level, temporal consistent manipulation of facial anima-
tion. In the broader field of animation research, Holden et al. [13]
set to tackle a similar set of goals for body animation editing and
control. Part of their system is valid for facial animation and can
be adapted to our inputs and outputs.

To represent their approach, we first learn a time-convolutional
autoencoder with one layer to encode the sequence animation
into a latent space and one layer to decode. Then, we learn a fully
convolutional network to regress the control parameters to this
latent space (see [13] for the details). The regressor is built with
only 2 layers as it appeared to give better results in our case. To get
a fair comparison, we train one such system by face area, similar
to ours (see Section 4.1).

We evaluate the different systems byminimizing themean square
error (MSE) between the input and the output blendshapes weights
sequences. For our experiments, we use the regressor with the low-
est MSE because the role of the regressor is to accurately regressed
the control parameters to the blendshapes weights.

Interestingly, Table 1 shows that Holden et al. [13] performs bet-
ter than our complete system in term of MSE. However, by looking
at the temporal curves of inner lips distance derived from cдt and
(cc ), we realize that their system smooths the motion signal and
shows consequent loss of high-frequency components of the mouth
and the eyes (Figure 6). While the reconstruction MSE is lower, the
corresponding animation is qualitatively less appealing as it misses
the key high-frequency communicational cues on the mouth and
eyelids. Note that this behavior was probably less an issue in their
original application on body animation, as high-frequency compo-
nents carry less semantic weight in that case as it does for facial
motion. In Figure 7, we display two frames extracted from sequences
created from the same cдt with the system of Holden et al. [13]
and our system. We can see that, while our system produces an an-
imation with faithful mouth openings and closures, the animation
resulting of their system misses these cues due to the smoothing
nature of their architecture. Examples of animations using both
systems are shown in the supplementary video.

For a more representative quantitative comparison between our
system and Holden et al. [13], we propose using a metric that high-
lights the capacity to accurately retain facial animation cues such as
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Figure 6: Comparison with Holden et al. [13]: Curves of in-
ner lips distance for different sequences. The body motion
system [13] smoothes the output signal loosing the high fre-
quency components.

Figure 7: The groundtruth (left). Compare to [13] (middle),
our system (right) is able to generate an animation which
faithfully respects the input mouth movements and its am-
plitude.

mouth contacts, closures and eye blinks. To our knowledge, there is
no agreed-upon metric in the community for such semantic facial
cues, so we suggest measuring a true positive rate (TPR), i.e. ratio of
true positive mouth- (respectively eyelid-) closures to the number
of actual mouth- (eyelid-) closures, and the false positive ratio (FPR)
defined as the ratio of false positive mouth- (eyelid-) closures to the
actual mouth- (eyelid-) closures. The TPR measures the capacity
of the system to accurately preserve the desired mouth- and eye-
related conversational cues. The FPR controls that the system does
not hallucinate undesired such movements. On Figure 8, we plot the
TPR and the FPR for the mouth and right eyelid closures according
to the threshold of detection. We can see that for lower thresholds,
only our system creates consistent mouth/eyes closures as its TPR
is always the highest. The system of Holden et al. [13] is not capable
of producing eyes closures so its FPR is zero for lower thresholds.
Meanwhile, we control that our system does not hallucinate motion
as its FPR remains low.

Figure 8: Comparison with [13]: Curves of the TPR and the
FPR of the mouth and eyes closures on the testset.

An interesting feature of data-based motion models is the ability
to model immobility, that we observe here on the first curve plotting
the inner lips distance in Figure 6. Between the 40th frame and the
60th frame, we can observe that our system can cope with no inner
lips movements for multiple consecutive frames.

5.2 Data dependency: transfers on another
database

As with all data-based approach, it is important to know how the
approach depends on the size and content of the dataset. Thus,
we test the validity of our model (trained with the B3D(AC)ˆ2
dataset) on the recently released Vocaset database [8]. This dataset
is composed of sequences of 12 subjects speaking sentences from
the TIMIT corpus. We use the same processing pipeline to get the
blendshapes coefficients sequence as in Section 3 except that we
do not use 2D information. We downsample the frame rate to 25
fps to match the frame rate of our dataset B3D(AC)ˆ2.

As shown in Table 2, our system trained with only the trainset
of the B3D(AC)ˆ2 dataset and applied to the whole Vocaset gives a
comparable MSE (0.004) as a one trained with both the Vocaset and
B3D(AC)ˆ2 dataset (0.003). The Vocaset content is less diversified,
that is why the results obtained using only this dataset are the low-
est. Indeed, there is no emotional sequence in this dataset unlike in
the B3D(AC)ˆ2 dataset which is one-half composed with emotional
sequence. In such sequences, the amplitude of the movements is
generally higher compared to neutral sequences. So, at test time,
it is easier for a system trained with emotional content to render
neutral speech content than in the reverse order. We can see on the
supplementary material that our system is suitable to model any
new subjects in the Vocaset.
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Table 2: Quantitative results of our system trained with the
trainset of the B3D(AC)ˆ2 dataset.

Trainset Testset MSE (mouth) TPR FPR

Vocaset Vocaset 0.038 0.87 0.06
Vocaset B3D(AC)ˆ2 0.05 0.81 0.38

B3D(AC)ˆ2 Vocaset 0.004 0.98 0.22
B3D(AC)ˆ2 B3D(AC)ˆ2 0.008 0.98 0.22

Both Vocaset 0.003 0.95 0.22
Both B3D(AC)ˆ2 0.01 0.95 0.35

5.3 System Robutness: necessity of the
autoencoder

Here we evaluate the robustness of our system by its ability to han-
dle inadequate input. It shows that using the regressor alone would
be more accurate than the full system in term of MSE as shown
in Table 1. However, without the autoencoder, the regressor alone
would be too sensitive to user’s inputs, leading to unrealistic ani-
mation output as soon as input control parameter did not match a
realistic animation. The regressor handles the accuracy of mapping
from control parameters to blendshapes animation, while the sub-
sequent autoencoder keeps the resulting animation inside the space
of plausible animation. Both components are essential for a system
aimed at non-specialist users. We show this by inputing different
mouth-opening constraints and looking at inner-lips distance at
output, as curves on Figure 9 and visually on Figure 10. We can
see that the regressor is unstable; as soon as the input constraints
constitute an unrealistic facial pattern, the output shapes are un-
realistic. The autoencoder cleans up the output animation of the
regressor, generating a natural animation. For instance, it projects
unrealistic mouth openings to realistic ones when it is required.
Note that this is not just a geometric projection operation but a
temporal one as well, as our autoencoder models time-windows
of animation. More results on full animations are provided in the
supplementary video.

Figure 9: Realistic (left) and unrealistic (right) mouth open-
ing input signal and the corresponding output with our sys-
tem with and without the autoencoder. We can observe that
the regressor alone is too sensitive to the input : unrealistic
patterns appear as soon as a unseen input is given.

Figure 10: Output animation with an unrealistic mouth
opening without (left) and with the autoencoder (right).

5.4 Usability: integration in a traditional facial
animation pipeline

Even if our system processes whole sequences of animation, its
architecture is light and performs network inference very quickly.
This renders interactive uses of such a system imaginable. In this
work, we propose an interactive editing tool that is meant to be
easily integrated in a facial animation pipeline that would enable
non-specialist users to generate quality facial animation. A common
modern performance-based facial animation pipeline consists in
acquiring sequences of actor performance, tracking his/her facial ex-
pressions, retargeting those to blendshapes animation coefficients,
and finally manually tuning the obtained animation. Today, real-
time face tracking methods enable non-expert to get raw facial
animation from simple video feeds, but the animation is often noisy.
Moreover, as in professional pipelines the animation must often be
edited later on to match the artistic intent. Our tool finds its place at
the editing stage of the pipeline. Through an interactive interface,
the user can continuously refine the animation to produce the de-
sired animation with low-latency. Indeed, the inference time, time
between the moment the user applies its new control parameters
and the moment the new final animation is produced is in average
less than 0.015s for a typical scene of 8 seconds (202 frames) on CPU.

To showcase this, we use an off-the-shelf real-time face tracking
software that outputs blendshapes coefficients. We developed a user
interface that enables to visualize temporal curves for our control
parameters and edit them via click-and-drag. Our network then runs
inference to deliver the edited facial animation at interactive rate.
One can for instance change a neutral speech animation sequence
by increasing the mouth corners distance, causing the character to
smile while speaking. Figure 11 shows a frame with the 2D tracking
landmarks, the corresponding animation given by the tracking as
well as the final edited animation with a smile. More isolated edits
can be performed such as forcing a mouth closure or a blink by
acting on the relevant local frames. Dynamic results of such edits
are presented in the supplementary video.

6 CONCLUSION & FUTUREWORK
In this paper, we have presented a learning-based editing system
that enables easy manipulation of facial animation with simple and
intuitive control parameters. This tool can be used by non-specialist
users to complete their facial animation pipeline with a tool that can
correct and alter animation with no experience in facial animation.
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Figure 11: Edition of a video-based animation: example of
frame with 2D tracking landmarks, the animation given by
the tracking sofware and the final edited animation.

Our method is content-independent and emphasizes robustness,
resulting in an editing tool that outputs plausible animation even
when given unprecise or unrealistic user inputs. We have studied
our systems behavior by evaluating quantitatively on error and
semantic metrics versus relevant previous work, and have experi-
mented with different datasets. We have demonstrated the necessity
of using resolution-preserving architecture neural network to retain
the temporal high-frequency information of facial motion, which
architectures from previous work did not address. To be able to
train our system and perform quantitative and qualitative evalua-
tion we have reprocessed and augmented the dataset of B3D(AC)ˆ2,
and we plan to make this data available for reproducibility.

One important main limitation comes from the quality of this
dataset. Indeed, the native capture frame rate of the videos is 25
fps, which is too low to acquire all relevant natural facial cues.
Important high-frequency information has already been lost at
acquisition time. We also note that the performance of our system
strongly depends on the choice of the control parameters. More
parameters result in a more accurate but less intuitive system that is
harder to manipulate. Conversely, few parameters cause ambiguity
in mapping controllers to facial shapes, resulting in less control over
the produced animations. As an example, the sidewise motion of
the chin is lost due to the lack of dedicated controller (see Figure 13).
Moreover, in our current implementation these parameters have
to be continuous. An interesting direction of research would be to
study the possibility to provide discrete inputs, even semantic ones
-such as phonemes-, to control the generated animation.
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